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Numerical Methods
Code implementations 

 BREAK
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Mac (homebrew/macports)
Windows (10 or 11 with WSL)
Linux
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3Re-cap of Empirical Solar Wind Model

Expansion Factor at Rss: Distance to open field 
boundaries at r0:

(both of the quantities are traced out to r1)

Density and temperature:

Wang-Sheeley-Arge (WSA):



4Re-cap of PFSS+CS Model for Coronal Magnetic Field



5POT3D

github.com/
predsci/pot3d

 POT3D is a code that computes 
potential field approximations of the 
solar coronal magnetic field using 
observations of the solar surface 
magnetic field as a boundary condition

 The code is parallelized for use on 
CPUs and GPUs using MPI+OpenACC 
and StdPar (Standard Parallelism)

 The HDF5 file format is used for 
input/output



6POT3D

github.com/
predsci/pot3d

 POT3D is included in the Standard 
Performance Evaluation Corporation's 
(SPEC) SPEChpc(TM) 2021 benchmark suite

 POT3D was one of the codes used in the 
ISC2023 Student Cluster Competition 

 Publications describing POT3D:
 Variations in Finite Difference Potential 

Fields
Caplan, et. al.,  Ap.J. 915,1 (2021) 44

 From MPI to MPI+OpenACC: Conversion 
of a legacy FORTRAN PCG solver for the 
spherical Laplace equation
Caplan, et. al., arXiv:1709.01126 (2017)



7POT3D: Grid

Non-uniform logically-rectangular spherical staggered grid



8POT3D: Numerical Methods

2nd-order Central Difference



9POT3D: Numerical Methods
The coefficients for all grid points’  local stencils are stored as a sparse 
7-banded matrix in a modified “DIA” storage format
 

The equation is then solved using an iterative Preconditioned Conjugate 
Gradient (PCG) solver, consisting of array operations (axpy), matrix-vector 
products, and dot products



10POT3D: Numerical Methods

PCG consists of matrix-vector products, vector operations, 
dot products, and preconditioner (PC) application

Applying the PC approximates applying the matrix inverse, 
but much less expensive to compute

The PC reduces the number of iterations required for convergence

Choosing a PC not simple; balance between cost and effectiveness

For our solver, we use two communication free preconditioning options:

PC2 
Non-overlapping domain decomposition zero-fill 

incomplete LU factorization
Expensive, much more effective!  

PC1
Point-Jacobi / Diagonal scaling
Cheap, not very effective



11POT3D: Numerical Methods
PC1: Simple vector operation, GPU 
implementation straight-forward

PC2: Sequential in nature (setup and 
application); alternative algorithms needed for 
GPU implementation

PCG

LOAD SOLVE

LOAD SOLVE



12POT3D: Validation
Tilted Dipole Solution



13POT3D: Code Implementation: Parallelism

 The logical grid is broken up into 3D blocks split as 
evenly as possible across all MPI ranks

 For operations that require neighbors (matrix-
vector products), asynchronous point-to-point MPI 
communication is used (iSend/iRecv)

 For dot products and other collectives, global MPI 
“Allgather” routines are used

 Each MPI rank’s local block of grid points 
computed by
- 1 CPU thread (MPI-only) 
- 1 GPU (multi-GPUs)  
- Many CPU threads (hybrid-CPU)

 The local block parallelism is achieved through the 
use of Fortran’s standard parallelism (DC) along 
with OpenACC for loops that are not yet supported 
with DC as well as manual GPU-CPU data 
movement



14POT3D: Code Implementation: Parallelism

POT3D is highly memory 
bandwidth bound

[Brunst et. al. (2022)]



15POT3D: Code Implementation: PC2 on GPUs
cuSparse contains native Fortran bindings

For portability, we instead call C code from 
Fortran (minimal #ifdef pre-processing)

nvcc –c [FLAGS] lusol.c
nvfortran [FLAGS] lusol.o [LIBS] pot3d.f  lusol.c

-lcusparse
pot3d.f

!$acc host_data use_device(x)
   call lusol(C_LOC(x(1)))
!$acc end host_data

use, intrinsic :: iso_c_binding
use cusparse_interface
integer(c_int) :: cN

module cusparse_interface
  interface
    subroutine lusol_v3(x) BIND(C, name="lusol")
      use, intrinsic :: iso_c_binding
      type(C_PTR), value :: x
    end subroutine lusol
  end interface
end module

pot3d.f

void lusol_v3(double* x){...
// Forward solve (Ly=x)
  cusparseSpSV_solve(cusparseHandle, L_trans,
              &alpha_DP, L_mat, DenseVecX, DenseVecY, CUDA_R_64F,
              CUSPARSE_SPSV_ALG_DEFAULT, L_described);
  cudaDeviceSynchronize();
// Backward solve (Ux=y)
  cusparseSpSV_solve(cusparseHandle, U_trans,
              &alpha_DP, U_mat, DenseVecY, DenseVecX, CUDA_R_64F,
              CUSPARSE_SPSV_ALG_DEFAULT, U_described);
  cudaDeviceSynchronize();
...}

lusol.c

void load_v3(double* CSR_LU,int* CSR_I,int* CSR_J,int N,int M)
{ ... 
cusparseCreate(&cusparseHandle);
...
cusparseDcsrilu02(cusparseHandle,N,M,M_desc,CSR_LU,CSR_I,
                  CSR_J,M_alyz,M_pol,Mbuf);
...}

SOLVE

LOAD



16POT3D: Code Implementation: Mixed Precision

Single precision

Half the memory footprint

Can use faster GPU compute cores

Can not be used for the overall solve

May not converge

Solution required to be double precision

Use only for the preconditioner!

PC an approximation, so could speed up the solve 
while yielding equivalent results 

Requires casting arrays in and out

Number of iterations may go up



 POT3D scales well to many 
MPI ranks on both CPUs 
and GPUs

17POT3D: Code Implementation: Performance

SPEChpc 2021 “Small” test (300 million points)
[Brunst et. al. (2022)]



18POT3D: Code Implementation: Performance

EXPANSE@SDSC CPU NODE

# CPUs x Model (2x) EPYC 7742

# Total Cores 128 (we use 64)

Peak FLOP/s 7.0 TFLOP/s

Memory 256 GB

Total Memory Bandwidth 381.4 GB/s

Compiler Flags -O3 -tp=zen2

OpenMPI v4.04

CSRC@SDSU DGX A100

# CPUs x Model (2x) EPYC 7742

# GPUs x Model 8x A100-40GB SXM4

Peak DP FLOP/s / GPU 9.8 TFLOP/s

Memory / GPU 40 GB

Memory Bandwidth/GPU 1555 GB/s

Compiler Flags -O3 -tp=zen2 -acc=gpu 
-gpu=cc80,cudaXX.Y



 Accurate field line tracing is 
very important

 MapFL is a Fortran code that 
traces field lines through a 3D 
field defined on a non-uniform 
spherical gird

 MapFL uses an adaptive 
tracing step size with a 
2nd-order predictor-corrector 
scheme 

19MAPFL

github.com/
predsci/mapfl

Parallelized across multiple CPU 
threads using OpenMP



 MapFL can trace forwards and 
backwards, outputting coordinate 
mappings

 It can also automatically calculate 
useful quantities, the three most 
relevant here being:
 Open field map (needed for WSA)
 Expansion factors (needed for WSA)
 Squashing factor, Q (useful for 
analyzing magnetic structure)

20MAPFL: Outputs



 For every point within an open field region, we calculate the 
distance to the open field (coronal hole) boundary denoted as 
DCHB

 As WSA needs the DCHB at the outer CS boundary, we use 
the MapFL tracings from r1→rss and rss→r1 to find the 
values of DCHB at every point at r1

21Distance to Coronal Hole Boundaries (DCHB)



 Once we have the DCHB at 1 and the 
expansion factor at rss traced out to r1, 
we can insert them into an empirical 
solar wind model (e.g. WSA)

22Empirical Solar Wind Models



 swig.py is a python control script that reads in a Br magnetogram and produces an empirical 
 solar wind solution using the PFSS+CS model computed by POT3D traced by MAPFL

23Solar Wind Generator (SWiG)

github.com/
predsci/swig





 IMPORTANT!  Make sure to process the map first!
(If map is too pixelated, field line tracing may fail)

 SWiG includes the necessary POT3D and MAPFL input file templates 
and does all the work for you

 However, it is still illustrative to show how these codes are run 
individually

25Running SWiG



26POT3D Input File [pot3d.dat]
 Sample full namelist input file with descriptions of all inputs and sample 

values:  pot3d/pot3d_input_documentation.txt



27Running POT3D: Command line

nohup mpirun -np <NUM_CPUS> pot3d 
      1>pot3d.log 2>pot3d.err &

nohup mpirun --map-by ppr:<NGPUS/SOCKET>:socket 
      pot3d 1>pot3d.log 2>pot3d.err &

CPU

GPU



28Running POT3D: Outputs
 Output files:

pot3d.out - Various output logs
timing.out - Timing information about the run

 Output data (all optional):
br, bt, and bp
 - 3D hdf5 magnetic field components

phi
 - 3D hdf5 scalar potential

br_photo_file
 - 2D hdf5 br boundary (after interpolation, 
   flux balancing, and on POT3D staggered grid)



29POT3D Post processing scripts/tools

 psi_data_reader_2d.py – Script showing how to read 
in 2D pot3d data into python 

 psi_data_reader_3d.py - Script showing how to read 
in 3D pot3d data into python    

 psi_interp2d_tp.py – Script to find interpolated 
values on a map at a series of theta-phi points    

 psi_get_2D_grid_info.py  

 psi_get_3D_grid_info.py     

 psi_plot2d – Used to plot 2D h5 files



30POT3D Examples and Testsuite

In pot3d/run_examples:
  open_field
  potential_field_current_sheet
  potential_field_source_surface

In pot3d/testsuite:
  isc2023
  large
  medium
  small
  validation     
  run_test.sh <TESTNAME> <NP>



31MapFL Input File [mapfl.in]



32MapFL Outputs

rffile
tffile
pffile
effile
qffile
slogqffile
rbfile
tbfile
pbfile
ebfile
qbfile
slogqbfile

All outputs are optional.

Forward and backward tracing information

Can also output traces themselves, 3D 
volume tracings, length of field lines, and 
much more 
(see sample input file for details)



33SWiG:  Current options

cor_pfss_cs_pot3d.py [-h] [-np NP] [-gpu] [-rss RSS] 
[-r1 R1] br_input_file

swig.py [-h] [-oidx OIDX] [-rundir RUNDIR] [-np NP] [-gpu] 
        [-sw_model SW_MODEL] [-rss RSS] [-r1 R1] [-noplot]
        input_map

eswim.py [-h] -dchb DCHB -expfac EXPFAC -model MODEL [-wsa_vslow WSA_VSLOW]
                [-wsa_vfast WSA_VFAST] [-wsa_vmax WSA_VMAX] [-wsa_ef_power WSA_EF_POWER]
                [-wsa_chd_mult_fac WSA_CHD_MULT_FAC] [-wsa_chd_arg_fac WSA_CHD_ARG_FAC]
                [-wsa_chd_power WSA_CHD_POWER] [-wsa_c5 WSA_C5] [-psi_vslow PSI_VSLOW]
                [-psi_vfast PSI_VFAST] [-psi_eps PSI_EPS] [-psi_width PSI_WIDTH]
                [-rhofast RHOFAST] [-tfast TFAST]

mag_trace_analysis.py [-h] rundir



34SWiG:  Current options

swig.py [-h] [-oidx OIDX] [-rundir RUNDIR] [-np NP] [-gpu] 
        [-sw_model SW_MODEL] [-rss RSS] [-r1 R1] [-noplot]
        input_map

swig_run_multiple_maps.py [-h] [-outdir OUTDIR] 
                          [-swig_path SWIG_PATH] [-np NP] [-gpu]
                          [-sw_model SW_MODEL] [-rss RSS] 
                          [-r1 R1] [-noplot] input_directory

More options can be added later (pull requests welcome!):
- Resolution (pf, tracings), rss overlap, etc. 
- Solar wind model options:



35SWiG:  Outputs and Plots

Br@r0 slog(q)@r0

OFM@r0

Br@r1

Vr@r1 rho@r1 t@r1

slog(q)@rss



36SWiG:  Effects of Smoothing
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37SWiG: Installation

 Installation guides for:
Linux
Mac
Windows with WSL

predsci.com/~caplanr/swqu_workshop

 Run SWiG.py on at least one processed map from 
yesterday to create solar wind boundary conditions 
for tomorrow

SWiG Assignment




