
SWQU Workshop Day 3:
Solar Wind Generator (SWiG)

Ronald M. Caplan, Miko Stulajter, Jon Linker,
Cooper Downs, Nick Arge, Shaela I. Jones, Carl Henney,

Lisa Upton, Raphael Attié, and Bibhuti Jha

2Outline

 SWiG Overview:
Models
Numerical Methods
Code implementations

 BREAK
 How to run SWiG
 How to Install SWiG

Mac (homebrew/macports)
Windows (10 or 11 with WSL)
Linux

 Assignment
 BREAK

3Re-cap of Empirical Solar Wind Model

Expansion Factor at Rss: Distance to open field
boundaries at r0:

(both of the quantities are traced out to r1)

Density and temperature:

Wang-Sheeley-Arge (WSA):

4Re-cap of PFSS+CS Model for Coronal Magnetic Field

5POT3D

github.com/
predsci/pot3d

 POT3D is a code that computes
potential field approximations of the
solar coronal magnetic field using
observations of the solar surface
magnetic field as a boundary condition

 The code is parallelized for use on
CPUs and GPUs using MPI+OpenACC
and StdPar (Standard Parallelism)

 The HDF5 file format is used for
input/output

6POT3D

github.com/
predsci/pot3d

 POT3D is included in the Standard
Performance Evaluation Corporation's
(SPEC) SPEChpc(TM) 2021 benchmark suite

 POT3D was one of the codes used in the
ISC2023 Student Cluster Competition

 Publications describing POT3D:
 Variations in Finite Difference Potential

Fields
Caplan, et. al., Ap.J. 915,1 (2021) 44

 From MPI to MPI+OpenACC: Conversion
of a legacy FORTRAN PCG solver for the
spherical Laplace equation
Caplan, et. al., arXiv:1709.01126 (2017)

7POT3D: Grid

Non-uniform logically-rectangular spherical staggered grid

8POT3D: Numerical Methods

2nd-order Central Difference

9POT3D: Numerical Methods
The coefficients for all grid points’ local stencils are stored as a sparse
7-banded matrix in a modified “DIA” storage format

The equation is then solved using an iterative Preconditioned Conjugate
Gradient (PCG) solver, consisting of array operations (axpy), matrix-vector
products, and dot products

10POT3D: Numerical Methods

PCG consists of matrix-vector products, vector operations,
dot products, and preconditioner (PC) application

Applying the PC approximates applying the matrix inverse,
but much less expensive to compute

The PC reduces the number of iterations required for convergence

Choosing a PC not simple; balance between cost and effectiveness

For our solver, we use two communication free preconditioning options:

PC2
Non-overlapping domain decomposition zero-fill

incomplete LU factorization
Expensive, much more effective!

PC1
Point-Jacobi / Diagonal scaling
Cheap, not very effective

11POT3D: Numerical Methods
PC1: Simple vector operation, GPU
implementation straight-forward

PC2: Sequential in nature (setup and
application); alternative algorithms needed for
GPU implementation

PCG

LOAD SOLVE

LOAD SOLVE

12POT3D: Validation
Tilted Dipole Solution

13POT3D: Code Implementation: Parallelism

 The logical grid is broken up into 3D blocks split as
evenly as possible across all MPI ranks

 For operations that require neighbors (matrix-
vector products), asynchronous point-to-point MPI
communication is used (iSend/iRecv)

 For dot products and other collectives, global MPI
“Allgather” routines are used

 Each MPI rank’s local block of grid points
computed by
- 1 CPU thread (MPI-only)
- 1 GPU (multi-GPUs)
- Many CPU threads (hybrid-CPU)

 The local block parallelism is achieved through the
use of Fortran’s standard parallelism (DC) along
with OpenACC for loops that are not yet supported
with DC as well as manual GPU-CPU data
movement

14POT3D: Code Implementation: Parallelism

POT3D is highly memory
bandwidth bound

[Brunst et. al. (2022)]

15POT3D: Code Implementation: PC2 on GPUs
cuSparse contains native Fortran bindings

For portability, we instead call C code from
Fortran (minimal #ifdef pre-processing)

nvcc –c [FLAGS] lusol.c
nvfortran [FLAGS] lusol.o [LIBS] pot3d.f lusol.c

-lcusparse
pot3d.f

!$acc host_data use_device(x)
 call lusol(C_LOC(x(1)))
!$acc end host_data

use, intrinsic :: iso_c_binding
use cusparse_interface
integer(c_int) :: cN

module cusparse_interface
 interface
 subroutine lusol_v3(x) BIND(C, name="lusol")
 use, intrinsic :: iso_c_binding
 type(C_PTR), value :: x
 end subroutine lusol
 end interface
end module

pot3d.f

void lusol_v3(double* x){...
// Forward solve (Ly=x)
 cusparseSpSV_solve(cusparseHandle, L_trans,
 &alpha_DP, L_mat, DenseVecX, DenseVecY, CUDA_R_64F,
 CUSPARSE_SPSV_ALG_DEFAULT, L_described);
 cudaDeviceSynchronize();
// Backward solve (Ux=y)
 cusparseSpSV_solve(cusparseHandle, U_trans,
 &alpha_DP, U_mat, DenseVecY, DenseVecX, CUDA_R_64F,
 CUSPARSE_SPSV_ALG_DEFAULT, U_described);
 cudaDeviceSynchronize();
...}

lusol.c

void load_v3(double* CSR_LU,int* CSR_I,int* CSR_J,int N,int M)
{ ...
cusparseCreate(&cusparseHandle);
...
cusparseDcsrilu02(cusparseHandle,N,M,M_desc,CSR_LU,CSR_I,
 CSR_J,M_alyz,M_pol,Mbuf);
...}

SOLVE

LOAD

16POT3D: Code Implementation: Mixed Precision

Single precision

Half the memory footprint

Can use faster GPU compute cores

Can not be used for the overall solve

May not converge

Solution required to be double precision

Use only for the preconditioner!

PC an approximation, so could speed up the solve
while yielding equivalent results

Requires casting arrays in and out

Number of iterations may go up

 POT3D scales well to many
MPI ranks on both CPUs
and GPUs

17POT3D: Code Implementation: Performance

SPEChpc 2021 “Small” test (300 million points)
[Brunst et. al. (2022)]

18POT3D: Code Implementation: Performance

EXPANSE@SDSC CPU NODE

CPUs x Model (2x) EPYC 7742

Total Cores 128 (we use 64)

Peak FLOP/s 7.0 TFLOP/s

Memory 256 GB

Total Memory Bandwidth 381.4 GB/s

Compiler Flags -O3 -tp=zen2

OpenMPI v4.04

CSRC@SDSU DGX A100

CPUs x Model (2x) EPYC 7742

GPUs x Model 8x A100-40GB SXM4

Peak DP FLOP/s / GPU 9.8 TFLOP/s

Memory / GPU 40 GB

Memory Bandwidth/GPU 1555 GB/s

Compiler Flags -O3 -tp=zen2 -acc=gpu
-gpu=cc80,cudaXX.Y

 Accurate field line tracing is
very important

 MapFL is a Fortran code that
traces field lines through a 3D
field defined on a non-uniform
spherical gird

 MapFL uses an adaptive
tracing step size with a
2nd-order predictor-corrector
scheme

19MAPFL

github.com/
predsci/mapfl

Parallelized across multiple CPU
threads using OpenMP

 MapFL can trace forwards and
backwards, outputting coordinate
mappings

 It can also automatically calculate
useful quantities, the three most
relevant here being:
 Open field map (needed for WSA)
 Expansion factors (needed for WSA)
 Squashing factor, Q (useful for
analyzing magnetic structure)

20MAPFL: Outputs

 For every point within an open field region, we calculate the
distance to the open field (coronal hole) boundary denoted as
DCHB

 As WSA needs the DCHB at the outer CS boundary, we use
the MapFL tracings from r1→rss and rss→r1 to find the
values of DCHB at every point at r1

21Distance to Coronal Hole Boundaries (DCHB)

 Once we have the DCHB at 1 and the
expansion factor at rss traced out to r1,
we can insert them into an empirical
solar wind model (e.g. WSA)

22Empirical Solar Wind Models

 swig.py is a python control script that reads in a Br magnetogram and produces an empirical
 solar wind solution using the PFSS+CS model computed by POT3D traced by MAPFL

23Solar Wind Generator (SWiG)

github.com/
predsci/swig

 IMPORTANT! Make sure to process the map first!
(If map is too pixelated, field line tracing may fail)

 SWiG includes the necessary POT3D and MAPFL input file templates
and does all the work for you

 However, it is still illustrative to show how these codes are run
individually

25Running SWiG

26POT3D Input File [pot3d.dat]
 Sample full namelist input file with descriptions of all inputs and sample

values: pot3d/pot3d_input_documentation.txt

27Running POT3D: Command line

nohup mpirun -np <NUM_CPUS> pot3d
 1>pot3d.log 2>pot3d.err &

nohup mpirun --map-by ppr:<NGPUS/SOCKET>:socket
 pot3d 1>pot3d.log 2>pot3d.err &

CPU

GPU

28Running POT3D: Outputs
 Output files:

pot3d.out - Various output logs
timing.out - Timing information about the run

 Output data (all optional):
br, bt, and bp
 - 3D hdf5 magnetic field components

phi
 - 3D hdf5 scalar potential

br_photo_file
 - 2D hdf5 br boundary (after interpolation,
 flux balancing, and on POT3D staggered grid)

29POT3D Post processing scripts/tools

 psi_data_reader_2d.py – Script showing how to read
in 2D pot3d data into python

 psi_data_reader_3d.py - Script showing how to read
in 3D pot3d data into python

 psi_interp2d_tp.py – Script to find interpolated
values on a map at a series of theta-phi points

 psi_get_2D_grid_info.py

 psi_get_3D_grid_info.py

 psi_plot2d – Used to plot 2D h5 files

30POT3D Examples and Testsuite

In pot3d/run_examples:
 open_field
 potential_field_current_sheet
 potential_field_source_surface

In pot3d/testsuite:
 isc2023
 large
 medium
 small
 validation
 run_test.sh <TESTNAME> <NP>

31MapFL Input File [mapfl.in]

32MapFL Outputs

rffile
tffile
pffile
effile
qffile
slogqffile
rbfile
tbfile
pbfile
ebfile
qbfile
slogqbfile

All outputs are optional.

Forward and backward tracing information

Can also output traces themselves, 3D
volume tracings, length of field lines, and
much more
(see sample input file for details)

33SWiG: Current options

cor_pfss_cs_pot3d.py [-h] [-np NP] [-gpu] [-rss RSS]
[-r1 R1] br_input_file

swig.py [-h] [-oidx OIDX] [-rundir RUNDIR] [-np NP] [-gpu]
 [-sw_model SW_MODEL] [-rss RSS] [-r1 R1] [-noplot]
 input_map

eswim.py [-h] -dchb DCHB -expfac EXPFAC -model MODEL [-wsa_vslow WSA_VSLOW]
 [-wsa_vfast WSA_VFAST] [-wsa_vmax WSA_VMAX] [-wsa_ef_power WSA_EF_POWER]
 [-wsa_chd_mult_fac WSA_CHD_MULT_FAC] [-wsa_chd_arg_fac WSA_CHD_ARG_FAC]
 [-wsa_chd_power WSA_CHD_POWER] [-wsa_c5 WSA_C5] [-psi_vslow PSI_VSLOW]
 [-psi_vfast PSI_VFAST] [-psi_eps PSI_EPS] [-psi_width PSI_WIDTH]
 [-rhofast RHOFAST] [-tfast TFAST]

mag_trace_analysis.py [-h] rundir

34SWiG: Current options

swig.py [-h] [-oidx OIDX] [-rundir RUNDIR] [-np NP] [-gpu]
 [-sw_model SW_MODEL] [-rss RSS] [-r1 R1] [-noplot]
 input_map

swig_run_multiple_maps.py [-h] [-outdir OUTDIR]
 [-swig_path SWIG_PATH] [-np NP] [-gpu]
 [-sw_model SW_MODEL] [-rss RSS]
 [-r1 R1] [-noplot] input_directory

More options can be added later (pull requests welcome!):
- Resolution (pf, tracings), rss overlap, etc.
- Solar wind model options:

35SWiG: Outputs and Plots

Br@r0 slog(q)@r0

OFM@r0

Br@r1

Vr@r1 rho@r1 t@r1

slog(q)@rss

36SWiG: Effects of Smoothing

S
m
o
o
t
h
f
a
c

=

0
.
5

S
m
o
o
t
h
f
a
c

=

2
.
0

37SWiG: Installation

 Installation guides for:
Linux
Mac
Windows with WSL

predsci.com/~caplanr/swqu_workshop

 Run SWiG.py on at least one processed map from
yesterday to create solar wind boundary conditions
for tomorrow

SWiG Assignment

